# Universal Low-rank Matrix Recovery using Pauli Measurements

Yi-Kai Liu

Applied and Computational Mathematics, NIST

Joint work with: Steve Flammia, David Gross, Stephen Becker, Brielin Brown, Jens Eisert



### This talk



- A measurement problem: quantum state tomography
  - Solution using compressed sensing
- New result: "universal" low-rank matrix recovery
  - Why it works: geometric intuition
  - Proof ideas



- Want to characterize the state of a quantum system
- Example: ions in a trap



Blatt group, Univ. Innsbruck





Wineland group, NIST-Boulder



- n ions = n qubits
  - Current experiments: 8 to 14 qubits in a single trap
  - Future goal: 50-100 qubits, multiple interconnected traps
- State of n qubits is described by a density matrix p
  - Dimension d x d, where d = 2<sup>n</sup>
  - Positive semidefinite matrix w/ trace 1
  - Challenges: large dimension, most matrix elements are small (~1/sqrt(d))



- We can measure Pauli matrices
  - Tensor products of 2x2 matrices

• 
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
,  $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ ,  $\sigma_y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ ,  $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ 

• 
$$A \times B = \begin{bmatrix} A_{11}B & A_{12}B \\ A_{21}B & A_{22}B \end{bmatrix}$$

- For any Pauli matrix P, we can estimate the "expectation value" Tr(Pp)
  - Prepare the quantum state ρ, measure P, observe ±1, repeat many times, average the results



- Pauli matrices form an orthogonal basis for Cdxd
- Simple tomography:
  - For all Pauli's P, estimate expectation values Tr(Pρ)
  - Reconstruct ρ by linear inversion, or maximum likelihood
- This is very slow!
  - O(d³) time measure d² Pauli matrices, ~d times
  - Takes hours, for an ion trap with 8-10 qubits
  - Some details omitted…

## Quantum state tomography via compressed sensing



(Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

- For many interesting quantum states, ρ is low-rank
  - Pure states => rank 1
  - Pure states w/ local noise => "effective" rank dε
- O(rd) parameters, rather than  $d^2$  (where  $r = rank(\rho)$ )
  - Can we do tomography more efficiently? Yes!
  - Using an incomplete set of O(rd) Pauli matrices? Yes!
  - How to choose this set? At random!
  - How to reconstruct ρ? Convex optimization!

## Quantum state tomography via compressed sensing



(Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

- For any matrix ρ (of dimension d and rank r):
- Choose a random set Ω of O(rd log²d) Pauli matrices
- Then with high probability (over Ω), one can uniquely reconstruct ρ:
  - Estimate b(P) ≈ Tr(Pρ) (for all P in Ω)
  - Solve a convex program: argmin<sub>X</sub> Tr(X) s.t. X ≥ 0 and |Tr(PX)-b(P)| ≤ ε (for all P in Ω)

Favors low-rank solutions

### Where did this idea come from?



- Medical imaging (CAT scans)
  - Reconstruct an image from a (rather incomplete) subset of its Fourier components
  - Naive reconstruction produces lots of artifacts; regularize by minimizing the L1 norm
  - Works well when the true image F is piecewise constant, so its derivative F' is sparse
  - Need O(k polylog n) Fourier components, when F' has k spikes and dimension n
  - Fourier vectors are "incoherent" wrt sparse vectors:  $||f||_{\infty} \le (1/\sqrt{d}) ||f||_2$  (Candes, Romberg & Tao, 2004)

### Where did this idea come from?



- From sparse vectors to low-rank matrices
  - L1 norm => nuclear norm
    - Sum of singular values, aka, trace norm, Schatten 1-norm
    - (Recht, Fazel & Parrilo, 2007)
  - See also work on "matrix completion"
    - Reconstruct a low-rank matrix M from a subset of entries
    - Assume singular vectors of M are "incoherent" wrt std basis
    - (Candes & Recht, 2008; Candes & Tao, 2009)
  - Fourier vectors => Pauli matrices
    - Pauli matrices are "incoherent" wrt low-rank matrices:
       ||P|| ≤ (1/√d) ||P||<sub>F</sub>
    - (Gross, Liu, Flammia, Becker & Eisert, 2009; Gross, 2009)

## New result: "universal" low-rank matrix recovery

- (Liu, 2011)
- For any matrix ρ (of dimension d and rank r):
  - Choose a random set Ω of O(rd log<sup>6</sup>d) Pauli matrices
  - Then with high probability (over Ω),...
  - One can uniquely reconstruct ρ:
    - Estimate the expectation values Tr(Pp) (for all P in Ω)
    - Solve a convex program
- Can fix the set Ω once and for all!
  - That Ω will work for every rank-r matrix ρ it is "universal"
  - Actually, most choices of  $\Omega$  will have this property!

## Two different pictures of state space



- Original results on matrix completion / compressed tomography
  - "Dual certificates"
  - Local properties of state space around a point p
- New result "universal" matrix recovery
  - "Restricted isometry property" (RIP)
  - Global properties: whole state space can be embedded (w/ small distortion) into R<sup>m</sup>, m = O(rd polylog d)

### Some notation



- Sampling operator: R(ρ) = [Tr(Pρ)]<sub>P in Ω</sub>
  - Returns a vector of Pauli expectation values
  - ρ = unknown state
  - $\Omega$  = subset of Pauli operators
  - In a real experiment, after measuring P in Ω, we get b ≈ R(ρ)
- Solve: argmin<sub>X</sub> Tr|X| s.t. ||R(X)-b||<sub>2</sub> ≤ ε, X ≥ 0

### What happens around p



Unique solution:

$$X = \rho$$

(low rank => exposed point
 of the tr-norm ball)



R(X) = b
(set of feasible solutions)
"random" and "incoherent" =>
misaligned with the faces
of the tr-norm ball

### What happens around p



- Hyperplane {X : R(X) = b} is "misaligned" with the faces of the trace-norm ball
  - Any perturbation  $X = \rho + \delta$  either changes the value of R(X), or increases the trace norm of X
    - "Dual certificate"
- Key facts
  - Measurements are "incoherent": ||P|| ≤ d<sup>-1/2</sup> ||P||<sub>F</sub>
    - E.g., Pauli matrices, Gaussian random matrices
  - For each ρ, we choose a random hyperplane
    - It's likely to be good

### A global picture



- Sampling operator  $R(\rho) = [Tr(P\rho)]_{P \text{ in } \Omega}$ ,  $|\Omega| \sim rd \log^6 d$
- Restricted isometry property (RIP) (w/ rank r, error δ): for all X with dim. d and rank r,

$$(1-\delta) ||X||_2 \le ||R(X)||_2 \le (1+\delta) ||X||_2$$

- "Embedding the manifold of low-rank matrices into a low-dimensional linear space"
- This implies universal low-rank matrix recovery



### A global picture



### The manifold of pure states

- A curved surface,
   w/ real dim. ~d
- Naturally defined in Euclidean space w/ dim. d²
- But can be embedded
   (w/ minor distortion)/
   in a subspace
   w/ dim. O(d log<sup>6</sup>d)



### A global picture



- Why is this embedding possible?
  - Measurements are "incoherent": ||P|| ≤ d<sup>-1/2</sup> ||P||<sub>2</sub>
    - E.g., Pauli matrices, Gaussian random matrices
  - For any low-rank state, the Pauli coefficients are fairly uniform (not peaked)
    - So it's enough to sample a random subset of them
    - Hard part: showing that this is true "uniformly" over all low-rank states
    - Covering the trace-norm ball "entropy argument"

### The rest of this talk



- Why "universality" is useful
  - Error bounds: what happens when ρ is full-rank?
  - Sample complexity: how many copies of ρ are needed for tomography?
- Proof ideas
  - Entropy argument
- Some practical issues

### Error bounds for compressed tomography (Liu, 2011)



- Reconstructing a full-rank state ρ
  - Intuition: if we measure O(rd log<sup>6</sup>d) Pauli's, we should be able to reconstruct the first r eigenvectors of ρ (call this ρ<sub>r</sub>)
  - Theorem: we obtain an estimate  $\sigma$  such that  $\|\rho \sigma\|_2^2 \le (\text{polylog d}) \|\rho \rho_r\|_2^2$ 
    - Much stronger than error bounds using dual certificate
    - Combining RIP result (Liu, 2011) with error bound from (Candes and Plan, 2011)

### Sample complexity

(Flammia, Gross, Liu & Eisert, 2012)



- Compressed tomography uses fewer measurement settings m
- But maybe we pay a price in higher sample complexity?
  - In practice, answer seems to be no!
  - Total sample complexity stays the same for all m in the range: rd polylog d ≤ m ≤ d<sup>2</sup>
  - RIP-based analysis confirms this (up to log factors)!
  - Convenient when it is easier to repeat a measurement than to change measurement settings

### Sample complexity

(Flammia, Gross, Liu & Eisert, 2012) (da Silva, Landon-Cardinal & Poulin, 2011; Flammia & Liu, 2011)



### Using Pauli measurements:

|                                                          | Compressed<br>tomography<br>(unknown state is<br>approx. low-rank) | Fidelity estimation (target state is pure) |
|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------|
| # of parameters to be learned                            | O(rd)                                                              | 1                                          |
| # of Pauli operators ("meas. settings")                  | O(rd polylog d)                                                    | O(1)                                       |
| # of copies of<br>unknown state<br>("sample complexity") | O(r <sup>2</sup> d <sup>2</sup> polylog d)                         | O(d)                                       |

### **Proof ideas**



- Restricted isometry property (RIP)
- RIP implies low-rank matrix recovery
  - (Recht, Fazel & Parrilo, 2007; Candes & Plan, 2010)
- Pauli measurements obey RIP
  - (Liu, 2011)

### **Operators that obey RIP**



- Proof ideas:
  - Previous work: RIP for Gaussian random matrices:
     use "union bound" over all rank-r matrices (Recht et al, 2007)
  - Our work: RIP for random Pauli matrices:
     use "entropy argument" improve on union bound,
     by keeping track of correlations (Rudelson & Vershynin, 2006)
  - Prove bounds on covering numbers, using entropy duality (Guedon et al, 2008)

### Pauli measurements obey RIP (1)

- Let R be the random Pauli sampling operator
- Proof ideas:
- Random variables taking values in a Banach space
  - Consider self-adjoint linear operators M: C<sup>dxd</sup> → C<sup>dxd</sup>
  - Define the norm  $||\mathbf{M}||_{(r)} = \sup_{X \text{ in } U} |\text{Tr}(X^+\mathbf{M}(X))|$
  - $U = \{ X \text{ in } C^{dxd} \text{ s.t. } ||X||_2 \le 1, \text{ rank}(X) \le r \}$
- We want to show that  $||\mathbf{R}^*\mathbf{R} \mathbf{1}||_{(r)} < 2\delta \delta^2$ 
  - Construct R by sampling Pauli matrices iid at random
  - R\*R is a sum of iid random variables, E(R\*R) = 1
  - Bound E(||R\*R 1||<sub>(r)</sub>), then use tail bound

### Pauli measurements obey RIP (2)

- Dudley's inequality:
  - Gaussian process: family of rv's G(X) (for all X in U)
  - $U = \{ X \text{ in } C^{dxd} \text{ s.t. } ||X||_2 \le 1, \text{ rank}(X) \le r \}$
- E[  $\sup_{X \text{ in } U} G(X)$ ]  $\leq$  (const) ·  $\int_{\epsilon \geq 0} \log^{1/2} N(U, d_G, \epsilon) d\epsilon$ 
  - $d_G$  is a metric:  $d_G(X,Y) = (E[(G(X)-G(Y))^2])^{1/2}$  (measures strength of correlation b/w G(X) and G(Y))
  - N(U,d<sub>G</sub>,ε) is a covering number:
     # of balls of radius ε needed to cover U
  - Integrate over different scales 0 < ε < ∞</li>



### Pauli measurements obey RIP (3)

- Bounding the covering numbers N(U,d<sub>G</sub>,ε)
  - Let B₁ be the trace-norm ball
  - Define a semi-norm on  $C^{dxd}$ ,  $||M||_X = \max_{P \text{ in } \Omega} |Tr(P^+M)|$
  - Problem reduces to bounding  $N(B_1, ||\cdot||_X, \epsilon)$
  - Trivial bound:
     N(B<sub>1</sub>, ||·||<sub>X</sub>, ε) ≤ (polynomial in 1/ε, exponential in d²)
  - Clever bound:
     N(B₁, ||·||<sub>x</sub>, ε) ≤ (exponential in 1/ε², quasipolynomial in d)

### Pauli measurements obey RIP (4)

- Bounding  $N(B_1, ||\cdot||_X, \epsilon)$  via entropy duality
  - Rewrite it as:
     N[S: (C<sup>dxd</sup>, trace norm) → (C<sup>m</sup>, L<sub>∞</sub> norm)]
  - This is related to the dual covering number:
     N[S\*: (C<sup>m</sup>, L₁ norm) → (C<sup>dxd</sup>, operator norm)]
  - Which we can bound by known techniques... (B. Maurey)



### **Continuous-variable systems**

(Ohliger, Nesme, Gross, Liu & Eisert, 2011)



 Instead of an orthonormal operator basis, use a tight frame {w<sub>a</sub>} (w.r.t. a probability measure μ):

$$\int w_a Tr(w_a^+ \rho) d\mu(a) = \rho/d^2$$
, for all  $\rho$ 

• Incoherence condition:  $||w_a|| \le O(1/\sqrt{d})$ 

### **Continuous-variable systems**

(Ohliger, Nesme, Gross, Liu & Eisert, 2011)



- Example: states with up to n photons (in a single mode)
  - Let the w<sub>a</sub> be weighted displacement operators
    - Sample a from a Gaussian of width ~sqrt(n)
    - These form a tight frame
  - The w<sub>a</sub> are incoherent!
    - Truncating to low-energy subspace
  - Expectation values Tr(w<sub>a</sub>+ρ) can be estimated using homodyne measurements
    - Fourier transform of the Wigner function

### Some practical issues



- Different estimators:
  - Trace min:  $argmin_X Tr(X) s.t. X \ge 0$ ,  $||R(X)-b||_2 \le \varepsilon$
  - Dantzig selector:  $argmin_X Tr(X) s.t. X \ge 0$ ,  $||R^*(R(X)-b)|| \le \varepsilon$
  - Lasso:  $\operatorname{argmin}_{X} ||R(X)-b||_{2}^{2} + \lambda Tr(X) \text{ s.t. } X \ge 0$
  - Regularized MLE:  $\operatorname{argmin}_X \log L(X|b) + \lambda Tr(X)$  s.t.  $X \ge 0$ Other kinds of measurements (besides expectation values)?

### Some practical issues



- How to solve the trace-minimization convex program?
- Interior-point SDP solvers
  - Very accurate, fast enough for 6 qubits
- First-order methods
  - Can handle very large instances, but less accurate?
  - Careful: objective function is not smooth!
  - E.g., singular-value thresholding, gradient descent on the Grassmannian

### **Open questions**



- Different motivations for compressed sensing?
  - Fewer quantum measurements?
  - Less classical postprocessing?
- Can we use these methods to do other things?
  - Higher-order tensors?
  - Machine learning: matrix completion, learning HMM's

